On Periods of the Third Kind for Rank 2 Drinfeld Modules

نویسنده

  • CHIEH-YU CHANG
چکیده

In analogy with the periods of abelian integrals of differentials of the third kind for an elliptic curve defined over a number field, we introduce a notion of periods of the third kind for a rank 2 Drinfeld Fq[t]-module ρ defined over an algebraic function field. In this paper we establish explicit formulae for these periods of the third kind for ρ. Combining with the main result in [Chang-Papanikolas 2012], we show the algebraic independence of the periods of first, second and third kinds for ρ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periods of Third Kind for Rank 2 Drinfeld Modules and Algebraic Independence of Logarithms

In analogy with the periods of abelian integrals of differentials of third kind for an elliptic curve defined over a number field, we introduce a notion of periods of third kind for a rank 2 Drinfeld Fq[t]-module ρ defined over an algebraic function field and derive explicit formulae for them. When ρ has complex multiplication by a separable extension, we prove the algebraic independence of ρlo...

متن کامل

Algebraic Relations among Periods and Logarithms of Rank 2 Drinfeld Modules

For any rank 2 Drinfeld module ρ defined over an algebraic function field, we consider its period matrix Pρ, which is analogous to the period matrix of an elliptic curve defined over a number field. Suppose that the characteristic of the finite field Fq is odd and that ρ does not have complex multiplication. We show that the transcendence degree of the field generated by the entries of Pρ over ...

متن کامل

Rank-one Drinfeld Modules on Elliptic Curves

The sgn-normalized rank-one Drinfeld modules 4> associated with all elliptic curves E over ¥q for 4 < q < 13 are computed in explicit form. (Such 4> for q < 4 were computed previously.) These computations verify a conjecture of Dormán on the norm of j{) = aq+l and also suggest some interesting new properties of . We prove Dorman's conjecture in the ramified case. We also prove the formula...

متن کامل

Polynomial Factorization over Finite Fields By Computing Euler-Poincare Characteristics of Drinfeld Modules

We propose and rigorously analyze two randomized algorithms to factor univariate polynomials over finite fields using rank 2 Drinfeld modules. The first algorithm estimates the degree of an irreducible factor of a polynomial from Euler-Poincare characteristics of random Drinfeld modules. Knowledge of a factor degree allows one to rapidly extract all factors of that degree. As a consequence, the...

متن کامل

Transcendence in Positive Characteristic

1. Table of symbols 2 2. Transcendence for Drinfeld modules 2 2.1. Wade’s results 2 2.2. Drinfeld modules 3 2.3. The Weierstraß-Drinfeld correspondence 3 2.4. Carlitz 5 2.5. Yu’s work 6 3. t-Modules 7 3.1. Definitions 7 3.2. Yu’s sub-t-module theorem 8 3.3. Yu’s version of Baker’s theorem 8 3.4. Proof of Baker-Yu 8 3.5. Quasi-periodic functions 9 3.6. Derivatives and linear independence 12 3.7....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012